Abstract

Abstract The measurement accuracy of an electroacoustic precipitation sensor, the Vaisala WXT520, is investigated to quantify the associated wind-induced bias. The device is widely used as a noncatching tool for measuring the integral features of liquid precipitation, specifically rainfall amount and intensity. A numerical simulation using computational fluid dynamics is used to determine the bluff-body behavior of the instrument when exposed to wind. The obtained airflow velocity patterns near the sensor are initially validated in a wind tunnel. Then, the wind-induced deviation and acceleration/deceleration of individual raindrop trajectories and the resulting impact on the measured precipitation are replicated using a Lagrangian particle tracking model. The sensor’s specific measurement principle necessitates redefining catch ratios and the collection efficiency in terms of the resulting kinetic energy and quantifying them as a function of particle Reynolds number and precipitation intensity, respectively. Wind speed and direction and drop size distribution have been simulated across various combinations. The results show that the measured precipitation is overestimated by up to 400% under the influence of wind. The presented adjustment curves can be used to correct raw rainfall measurements taken by the Vaisala WXT520 in windy conditions, either in real time or as a postprocessing function. The magnitude of the adjustment at any operational aggregation level largely depends on the local rainfall and wind regimes at the site of measurement and may have a strong impact on applications in regions where wind is frequent during low- to medium-intensity precipitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call