Abstract

Fermentation is critical for developing coffee’s physicochemical properties. This study aimed to assess the differences in quality traits between fermented and unfermented coffee with four grinding sizes of coffee powder using multiple digital technologies. A total of N = 2 coffee treatments—(i) dry processing and (ii) wet fermentation—with grinding levels (250, 350, 550, and 750 µm) were analysed using near-infrared spectrometry (NIR), electronic nose (e-nose), and headspace/gas chromatography–mass spectrometry (HS-SPME-GC-MS) coupled with machine learning (ML) modelling. Most overtones detected by NIR were within the ranges of 1700–2000 nm and 2200–2396 nm, while the enhanced peak responses of fermented coffee were lower. The overall voltage of nine e-nose sensors obtained from fermented coffee (250 µm) was significantly higher. There were two ML classification models to classify processing and brewing methods using NIR (Model 1) and e-nose (Model 2) values as inputs that were highly accurate (93.9% and 91.2%, respectively). Highly precise ML regression Model 3 and Model 4 based on the same inputs for NIR (R = 0.96) and e-nose (R = 0.99) were developed, respectively, to assess 14 volatile aromatic compounds obtained by GC-MS. Fermented coffee showed higher 2-methylpyrazine (2.20 ng/mL) and furfuryl acetate (2.36 ng/mL) content, which induces a stronger fruity aroma. This proposed rapid, reliable, and low-cost method was shown to be effective in distinguishing coffee postharvest processing methods and evaluating their volatile compounds, which has the potential to be applied for coffee differentiation and quality assurance and control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.