Abstract

There is a growing demand for specialty coffee with more pleasant and uniform sensory perception. Wet fermentation could modulate and confer additional aroma notes to final roasted coffee brew. This study aimed to assess differences in volatile compounds and the intensities of sensory descriptors between unfermented and spontaneously fermented coffee using digital technologies. Fermented (F) and unfermented (UF) coffee samples, harvested from two Australia local farms Mountain Top Estate (T) and Kahawa Estate (K), with four roasting levels (green, light-, medium-, and dark-) were analysed using near-infrared spectrometry (NIR), and a low-cost electronic nose (e-nose) along with some ground truth measurements such as headspace/gas chromatography–mass spectrometry (HS-SPME-GC-MS), and quantitative descriptive analysis (QDA ®). Regression machine learning (ML) modelling based on artificial neural networks (ANN) was conducted to predict volatile aromatic compounds and intensity of sensory descriptors using NIR and e-nose data as inputs. Green fermented coffee had significant perception of hay aroma and flavor. Roasted fermented coffee had higher intensities of coffee liquid color, crema height and color, aftertaste, aroma and flavor of dark chocolate and roasted, and butter flavor (p < 0.05). According to GC-MS detection, volatile aromatic compounds, including methylpyrazine, 2-ethyl-5-methylpyrazine, and 2-ethyl-6-methylpyrazine, were observed to discriminate fermented and unfermented roasted coffee. The four ML models developed using the NIR absorbance values and e-nose measurements as inputs were highly accurate in predicting (i) the peak area of volatile aromatic compounds (Model 1, R = 0.98; Model 3, R = 0.87) and (ii) intensities of sensory descriptors (Model 2 and Model 4; R = 0.91), respectively. The proposed efficient, reliable, and affordable method may potentially be used in the coffee industry and smallholders in the differentiation and development of specialty coffee, as well as in process monitoring and sensory quality assurance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.