Abstract

Climate and groundwater are always in a state of dynamic equilibrium. Subsurface systems contaminated by light non-aqueous phase liquid (LNAPL) present a challenge to understand the overall impact of water table dynamics, due to various interacting mechanisms, including volatilization, and LNAPL mobilization/dissolution along the groundwater flow direction and oscillating redox conditions. We investigated the impact of water table fluctuations on LNAPL natural attenuation and soil geochemical characteristics in semi-arid coastal areas under saline conditions. Four soil columns operated for 151 days under anoxic conditions where a layer of benzene and toluene were subjected to a stable and fluctuating water table associated with low and high salinity conditions. The bottom of stable and fluctuating columns reached an anaerobic state after 40 days, while the middle of stable column took 60 days. pH values of the fluctuating columns covered a wide range, and at the end shifted towards alkaline conditions, unlike the stable columns. In fluctuating columns, pore water sulfate decreased in the middle, but in stable columns, it decreased in the first 40 days, which suggested that sulfate was the primary electron donor and sulfate-reducing bacteria were present. At the source zone, benzene and toluene reached their maximum concentration after 30 and 10 days for the stable and the fluctuating columns, respectively. Significant decrease in benzene and toluene concentrations occurred under the fluctuating water table. Salinity did not affect benzene and toluene concentrations in the aqueous phase, although water table fluctuations have the most effect. Soil solid-phase analysis shows fluctuating columns have less toluene than stable columns. Solid-phase analysis showed the fluctuating columns have less benzene and toluene concentrations as compared to the stable columns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.