Abstract
The research focuses on water diesel emulsion (WDE), a topic that has captivated researchers for an extended period. While previous studies predominantly employed surfactants to enhance mixing efficiency, their non-economic feasibility in transportation logistics has prompted a shift in recent investigations. This study presents experiments utilizing a cost-effective WDE comprising 15% water and a mixer devoid of surfactants to investigate the impact of mixer blade rotation on engine performance, fuel consumption, and NOx emissions. NOx emission tests were conducted under a constant engine speed of 2,000 rpm and a 75% load (3,23 kW). The optimal brake-specific fuel consumption (BSFC) for the 15% WDE fuel occurred at a blade rotation speed of 3,000 rpm, resulting in a 1% power reduction (from 4,41 kW to 4,38 kW), a 13.3% decrease in BSFC (from 694,98 gr/kW.h to 602,52 gr/kW.h), and a 30% reduction in NOx emissions (from 54 ppm to 38 ppm). This discovery holds promise for future advancements in green energy applications within the transportation sector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.