Abstract

Regional integration plays a pivotal role in the socio-economic advancement of various global regions and is closely linked with the expansion of construction land. This expansion is a major contributor to urban carbon emissions. Utilizing a geographical regression discontinuity design (GRDD), this paper estimates the impact of urban construction land expansion on carbon emissions and explores the underlying mechanisms within the regional integration process of the Yangtze River Delta (YRD), China. The findings reveal that urban construction land expansion significantly influences carbon emissions, displaying an inverted “U”-shaped pattern. Furthermore, this expansion affects carbon emissions through the transformation of industrial structures, shifts in consumption patterns, and enhancements in scientific and technological investments. Our findings span the performance of the Yangtze River Delta from its early development stages to a relatively mature phase. This paper also partially reveals how the Yangtze River Delta, with both megacities and large- to medium-sized cities, manages urban construction land expansion during the integration process and strives for low-carbon emissions reduction. These results can provide green growth recommendations that balance socio-economic development, low-carbon emissions, and social equity not only for other urban agglomerations in China but also for similar regions in other developing countries by altering construction land utilization patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.