Abstract

This study explores the efficacy of Cr, Mn, and Co promoters in enhancing the performance of 10%Ni/Al2O3-10%CeO2 catalysts during methane combined reforming process, emphasizing improved metal dispersion and reduced carbon formation. The supports and catalysts were synthesized through mechanochemical and impregnation methods, respectively, and characterized using XRD, BET, TPR, TPO, and FESEM analyses. The synthesized catalysts exhibited a high BET surface area, ranging from 195 to 172 m2 g-1, along with a mesoporous structure characterized by pore sizes between 2 and 12 nm. The introduction of Cr significantly enhanced catalyst performance, resulting in 70.5 % CH4 and 69.1 % CO2 conversions in dry reforming. TPO analysis indicated reduced carbon deposition on promoted catalysts by enhancing Ni dispersion and carbon reactivity. The 10%Ni–3%Cr/Al2O3-10%CeO2 catalyst demonstrated stability over 440 min at 700 °C, achieving 84.9 % CH4 and 68.1 % CO2 conversions in combined reforming. The TPO analysis indicated an absence of carbon deposition on the catalyst surface during combined reforming, which was corroborated by the FESEM analysis. Furthermore, the influence of operating parameters on catalyst efficiency in both dry and combined reforming processes was investigated. As GHSV increased from 8000 to 24,000 ml/h.gcat, CH4 conversion declined in dry reforming and combined reforming, dropping from 77 % to 66 % and from 86 % to 84 %, respectively. Also, in both processes, increasing the oxidizer contents (CH4: CO2 from 2:1 to 1:2, CH4: CO2: O2 from 1:1:0 to 1:1:0.35) led to an increase in CH4 conversion, while CO2 conversion decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.