Abstract
Abstract Intense deep convection and large mesoscale convective systems (MCSs) are known to occur downstream of the Andes in subtropical South America. Deep convection is often focused along the Sierras de Córdoba (SDC) in the afternoon and then rapidly grows upscale and moves to the east overnight. However, how the Andes and SDC impact the life cycle of MCSs under varying synoptic conditions is not well understood. Two sets of terrain-modification experiments using WRF are used to investigate the impact of topography in different synoptic regimes. The first set is run on the 13–14 December 2018 MCS case from RELAMPAGO, which featured a deep synoptic trough, strong lee cyclogenesis near the SDC, an enhanced low-level jet, and rapid upscale growth of an MCS. When the Andes are reduced by 50%, the lee cyclone and low-level jet that develop are weaker than with the full Andes, and the resulting MCS is weak and moves faster to the east. When the SDC are removed, few differences between the environment and resulting MCS relative to the control run are seen. A second set of experiments are run on the 25–26 January 2019 case in which a large MCS developed over the SDC and remained tied there for an extended period under weak synoptic forcing. The experiment that produces the most similar MCS to the control is when the Andes are reduced by 50% while maintaining the height of the SDC, suggesting the SDC may play a more important role in the MCS life cycle under quiescent synoptic conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have