Abstract

To achieve higher operating temperatures, power output and system efficiencies in parabolic dish cavity receivers, larger dish sizes and structures are used to increase the concentration ratio. This increases capital investment and installation costs, which in turn places a much stronger emphasis on accurately predicting the performance of the system and the heat loss from it. Numerous studies have investigated the natural convection heat losses from cavity receivers, and some have examined a cavity exposed to wind. However, the effect of the dish on the wind flow and subsequently the heat loss from the receiver has not been widely considered.In this work, computational fluid dynamics was used to model the flow of air around a parabolic dish concentrator operating at varying angles of operation. The flow fields were validated using wind tunnel testing and published data regarding the aerodynamic characteristics of parabolic dishes. The results showed that the orientation of the dish has a significant effect on the flow structure near the receiver. Subsequently, using the validated method, the convective heat loss from the receiver of a large parabolic dish system was determined for a range of operating conditions.The results support the assertion that the flow characteristics near the cavity receiver aperture depend strongly on the orientation of the dish structure. This resulted in the calculated heat loss being up to 40% lower than previous studies where the presence of the dish was included. As such, the wind flow around the dish needs to be accounted for when analyzing the performance of parabolic dish systems to avoid an overly conservative and hence more expensive design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call