Abstract

Palladium-rich Iron nanoparticles in the 4–8 nm range have been produced by a combination of two methods: the thermal decomposition of organometallic precursors and the reduction of metallic salts by a polyol. Herein, it is shown how the details of the synthesis have a striking impact on the magnetic and morphological properties of the final products. In the synthesis of these bimetallic nanoparticles, the use of high reaction temperatures plays an essential role in attaining good chemical homogeneity, which has proved to have a key influence on the magnetic properties. Magnetic characterization has been performed by electron magnetic resonance and magnetization measurements, which have confirmed the superparamagnetic-like behavior at room temperature. No clear traces of magnetic polarization in palladium atoms have been detected. The combination of long-term stability and homogeneous chemical and magnetic properties makes these particles very suitable for a wide range of applications in nanotechnology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.