Abstract

Aedes aegypti (L.) males use female flight tone as a means of mate localization. By playing the sound of a flying female, males can be attracted to a trap to monitor mosquito populations and the progress of transgenic male releases. However, the female flight tone used to attract males needs to be optimized to maximize trap effectiveness. The fundamental frequency of female flight tone could be influenced by both body size and ambient temperature. However, no analysis yet has considered both the effect of body size and temperature on female flight tone of Ae. aegypti. Here, we present results for both these factors by recording the sounds of free-flying and tethered females across multiple temperature environments and with females reared for small, medium, and large body sizes. We demonstrate that female fundamental frequency is highly dependent on the environmental temperature, increasing ∼8–13 Hz with each °C gain. Body size and whether a female was tethered or free-flying did not impact the relationship between frequency and temperature, although further analysis is warranted. Our study highlights the importance of understanding the relationship between flight tone and temperature, and will inform the design of male mosquito traps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.