Abstract

Understanding the coevolutionary dynamics of hosts and their parasites remains a major focus of much theoretical literature. Despite empirical evidence supporting the presence of sterility-mortality tolerance trade-offs in hosts and recovery-transmission trade-offs in parasites, none of the current models have explored the potential outcomes when both trade-offs are considered within a coevolutionary framework. In this study, we consider a model where the host evolves sterility tolerance at the cost of increased mortality and the parasite evolves higher transmission rate at the cost of increased recovery rate (reduced infection duration), and use adaptive dynamics to predict the coevolutionary outcomes under such trade-off assumptions. We particularly aim to understand how our coevolutionary dynamics compare with single species evolutionary models. We find that evolutionary branching in the host can drive the parasite population to branch, but that cycles in the population dynamics can prevent the coexisting strains from reaching their extremes. We also find that varying crowding does not impact the recovery rate when only the parasite evolves, yet coevolution reduces recovery as crowding intensifies. We conclude by discussing how different host and parasite trade-offs shape coevolutionary outcomes, underscoring the pivotal role of trade-offs in coevolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call