Abstract

Endurance exercise training and weight loss (WL) have been associated with changes in fat oxidation. However, there is limited evidence investigating the impact of sprint interval training (SIT)-induced WL on fat oxidation in adults. To investigate the impact of SIT with or without WL on fat oxidation, 34 adults aged 19-60 years (males, n = 15) took part in 4-week SIT. SIT consisted of 30-s Wingates starting with two intervals and working up to four interspersed with 4 min of active recovery. Fat oxidation was estimated via indirect calorimetry using a metabolic cart during submaximal cycling. Following the intervention, participants were classified into a WL group (weight change >0 kg) or a non-WL group (weight change ≤0 kg). No difference in resting fat oxidation (p = 0.642) and respiratory exchange ratio (RER) (p = 0.646) were observed between the groups. There was a significant interaction for the WL group with increased submaximal fat oxidation usage (p = 0.005) and decreased submaximal RER over the duration of the study (p = 0.017). When adjusted for baseline weight and sex, submaximal fat oxidation usage remained significant (p < 0.05), while RER did not (p = 0.081). The WL group had higher work volume, relative peak power, and mean power than the non-WL group (p < 0.05). Short-term SIT elicited significant improvements in submaximal RER and fat oxidation (FOx) in adults that lost weight, which may be explained by an increase in work volume throughout SIT training.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.