Abstract

We consider weighted linear congestion games, and investigate how social ignorance, namely lack of information about the presence of some players, affects the inefficiency of pure Nash equilibria (PNE) and the convergence rate of the e-Nash dynamics. To this end, we adopt the model of graphical linear congestion games with weighted players, where the individual cost and the strategy selection of each player only depends on his neighboring players in the social graph. We show that such games admit a potential function, and thus a PNE. Next, we investigate the Price of Anarchy (PoA) and the Price of Stability (PoS) of graphical linear congestion games with respect to the players’ total actual cost. Our main result is that the impact of social ignorance on the PoA and on the PoS is naturally quantified by the independence number α(G) of the social graph G. In particular, we show that the PoA grows roughly as α(G)(α(G)+2), which is essentially tight as long as α(G) does not exceed half the number of players, and that the PoS lies between α(G) and 2α(G). Moreover, we show that the e-Nash dynamics reaches an α(G)(α(G)+2)-approximate configuration in polynomial time that does not directly depend on the social graph. For unweighted graphical linear games with symmetric strategies, we show that the e-Nash dynamics reaches an e-approximate PNE in polynomial time that exceeds the corresponding time for symmetric linear games by a factor at most as large as the number of players.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.