Abstract

Statins are the first-line lipid-lowering therapy for reducing cardiovascular disease (CVD) risk. A plasma lipid ratio of two phospholipids, PI(36:2) and PC(18:0_20:4), was previously identified to explain 58% of the relative CVD risk reduction associated with pravastatin, independent of a change in low-density lipoprotein-cholesterol. This ratio may be a potential biomarker for the treatment effect of statins; however, the underlying mechanisms linking this ratio to CVD risk remain unclear. In this study, we investigated the effect of altered cholesterol conditions on the lipidome of cultured human liver cells (Hep3B). Hep3B cells were treated with simvastatin (5 μM), cyclodextrin (20 mg/mL) or cholesterol-loaded cyclodextrin (20 mg/mL) for 48 h and their lipidomes were examined. Induction of a low-cholesterol environment via simvastatin or cyclodextrin was associated with elevated levels of lipids containing arachidonic acid and decreases in phosphatidylinositol species and the PI(36:2)/PC(18:0_20:4) ratio. Conversely, increasing cholesterol levels via cholesterol-loaded cyclodextrin resulted in reciprocal regulation of these lipid parameters. Expression of genes involved in cholesterol and fatty acid synthesis supported the lipidomics data. These findings demonstrate that the PI(36:2)/PC(18:0_20:4) ratio responds to changes in intracellular cholesterol abundance per se, likely through a flux of the n-6 fatty acid pathway and altered phosphatidylinositol synthesis. These findings support this ratio as a potential marker for CVD risk reduction and may be useful in monitoring treatment response.

Highlights

  • Simvastatin was utilised as it induces lipid metabolic changes that are most reflective of those observed in the human trial [12]

  • Replication of the lowcholesterol phenotype seen with simvastatin via the use of cyclodextrin resulted in a similar yet more exaggerated lipidomic profile

  • The high cholesterol environment induced by cholesterol-loaded cyclodextrin exhibited a contrasting lipid profile

Read more

Summary

Introduction

A plasma lipid ratio of two phospholipids, PI(36:2) and PC(18:0_20:4), was previously identified to explain 58% of the relative CVD risk reduction associated with pravastatin, independent of a change in low-density lipoprotein-cholesterol. This ratio may be a potential biomarker for the treatment effect of statins; the underlying mechanisms linking this ratio to CVD risk remain unclear. These findings demonstrate that the PI(36:2)/PC(18:0_20:4) ratio responds to changes in intracellular cholesterol abundance per se, likely through a flux of the n-6 fatty acid pathway and altered phosphatidylinositol synthesis These findings support this ratio as a potential marker for CVD risk reduction and may be useful in monitoring treatment response. Results from the LIPID trial demonstrated the benefit of these effects, reporting that pravastatin treatment reduced the incidence of myocardial infarction by 29%, death from cardiovascular disease by 24%, stroke by 19% and coronary revascularisation by 20% over a 6 year period [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.