Abstract
Alterations in metabolism caused by SARS-CoV-2 infection have been highlighted in various investigations and have been used to search for biomarkers in different biological matrices. However, the selected biomarkers vary greatly across studies. Our objective is to provide a robust selection of biomarkers, including results from different sample treatments in the analysis of volatile organic compounds (VOCs) present in urine samples from patients with COVID-19. Between September 2021 and May 2022, urine samples were collected from 35 hospitalized COVID-19 patients and 32 healthy controls. The samples were analyzed by headspace (HS) solid phase microextraction (SPME) coupled to gas chromatography–mass spectrometry (GC-MS). Analyses were conducted on untreated urine samples and on samples that underwent specific pretreatments: lyophilization and treatment with sulfuric acid. Partial Least Squares Linear Discriminant Analysis (PLS-LDA) and Subwindow Permutation Analysis (SPA) models were established to distinguish patterns between COVID-19 patients and healthy controls. The results identify compounds that are present in different proportions in urine samples from COVID-19 patients compared to those from healthy individuals. Analysis of urine samples using HS-SPME-GC-MS reveals differences between COVID-19 patients and healthy individuals. These differences are more pronounced when methods that enhance VOC formation are used. However, these pretreatments can cause reactions between sample components, creating additional products or removing compounds, so biomarker selection could be altered. Therefore, using a combination of methods may be more informative when evaluating metabolic alterations caused by viral infections and would allow for a better selection of biomarkers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.