Abstract

Distributed Energy sources can be connected to the electrical grid using power electronic converters traditionally implemented in silicon insulated gate bipolar transistors (IGBTs), gate turn-off thyristors (GTOs) and PiN diodes. However, recently developed SiC technology can improve energy conversion efficiency as well as power density. To investigate the benefits provided by SiC technology, experimentally calibrated SiC MOSFET models have been modeled in multilevel voltage sourced converters (VSCs) to analyze the generated harmonics, converter temperature rise, switching losses and filtering requirements. Models show that converters implemented in SiC MOSFETs operate at 25-75% less temperature compared with silicon IGBTs, potentially simplifying cooling. Also, SiC MOSFETs generate ~2% less THD for the same switching frequency and can reduce the switching loss by up to 82% compared to silicon devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.