Abstract
PurposeThis study investigates how the complexity of sentiment in online reviews affects perceived helpfulness. Analyzed over 730,000 reviews from Tripadvisor.com, the research explores how information overload and increased cognitive load impact consumer decision-making.Design/methodology/approachThis study applied the BERT deep learning model to analyze sentiment complexity in online reviews. Based on cognitive load theory, we examined two key factors: the number of attributes mentioned in a review and the variation in sentiment valence of across attributes to evaluate their impact on cognitive load and review helpfulness.FindingsThe results show that a higher number of attributes and greater variation in sentiment valence increase cognitive load, reducing review helpfulness. Reviewers’ expertise and review readability further moderate these effects, with complex or expert-written reviews worsening the negative impact.Originality/valueThis research introduces a method for measuring attribute-level sentiment complexity and its impact on review helpfulness, emphasizing the importance of balancing detail with readability. These findings provide a foundation for future studies on review characteristics and consumer behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.