Abstract
This study was conducted to determine the effect of animal protein inclusion rate and grain-free or grain-inclusive diets on macronutrient digestibility, fecal characteristics, metabolites, and microbiota in mixed-breed hounds and Beagles. Four experimental extruded kibble diets were made with varying amounts of animal protein and carbohydrates: 1) high animal protein, grain-inclusive (HA-GI), 2) low animal protein, grain-free (LA-GF), 3) low animal protein, grain-inclusive (LA-GI), and 4) high animal protein, grain-free (HA-GF). Thirty-two Beagles and 33 mixed-breed hounds were assigned to 1 of the 4 treatment groups in a completely randomized design that lasted 180 d. All diets were similar in chemical composition and well-digested by the animals. In general, for fecal metabolites, mixed-breed hounds had a greater concentration of total short-chain fatty acid (SCFA) and ammonia and lower indole concentration than Beagles (P < 0.05). In mixed-breed hounds, LA-GF had a greater (P < 0.05) total SCFA concentration than HA-GI and LA-GI; however, this was not observed in Beagles. There were greater concentrations of ammonia, phenol, and indole in HA-GI than in LA-GF (P < 0.05). Breed-affected fecal primary bile acid (BA) concentration, as mixed-breed hounds had a greater concentration of cholic acid (CA) than Beagles (P < 0.05). Mixed-breed hounds fed LA-GF resulted in greater CA concentrations than HA-GI and LA-GI (P < 0.05). Dogs who consumed LA-GF had lower fecal secondary BA content than the other groups (P < 0.05). The distribution of the fecal microbiota community differed in LA-GF compared with the other groups, with lower α-diversity. However, dogs fed LA-GF had the largest difference in composition with greater Selenomonadaceae, Veillonellaceae, Lactobacillaceae, Streptococcus, Ligilactobacillus, Megamonas, Collinsella aerofaciens, and Bifidobacterium sp. than the other groups. A significant breed effect was noted on nutrient digestibility, fecal metabolites, and microbiota. A treatment effect was observed in LA-GF as it resulted in greater fecal SCFA, lower protein fermentative end products, greater fecal primary BAs, lower fecal secondary BA concentrations, and shifts in fecal microbiota.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have