Abstract

We investigated the adsorption of citric acid on the surface of two different sized hematite nanoparticles using batch adsorption experiments, Fourier-transform infrared spectroscopy, surface complexation modeling and computational molecular modeling. Citrate adsorption reached a maximum between pH approximately 2.5 and 5.5 and declined as the pH was increased or decreased from that range. At high surface loading conditions, the dominant adsorbed citrate structure was outer-sphere in nature with a protonation state that varied with pH. At low pH, there was also evidence of an inner-sphere complex consistent with a binuclear, bidentate structure where the hydroxyl group was deprotonated and played an active role in the adsorption. An inner-sphere complex was also detected at low citrate surface loading conditions. Surface-area normalized surface coverages were similar for both sizes of hematite, however, the inner sphere complex appeared to be slightly more prevalent on the smaller hematite. Based on these structures, a triple layer surface complexation model comprised of two outer-sphere complexes and one inner-sphere complex was used to describe the adsorption data for both hematite sizes across a range of solution conditions with a single set of surface area dependent equilibrium constants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call