Abstract

In this study, we developed a transient convective heat and mass transfer model of an acoustically levitated slurry droplet evaporating in an atmosphere of air, water vapor, and soluble gas. The advanced model considers the effects of acoustic streaming, forced convection, non-isothermal gas absorption, and adsorption of dissolved gas on the evaporation rate of a liquid droplet containing small active solid particles. Adsorption of dissolved in a droplet soluble gas by solid particles leads to decreased dissolved gas concentration in a liquid droplet. A reduction in dissolved gas concentration in a liquid droplet causes an increase in the mass flux of active soluble gas from a gaseous phase to a slurry droplet, which causes a rise in the heating effect of absorption and an increase in evaporation rate of a droplet. The heat effect of adsorption also intensifies the evaporation rate. It is shown that the time of porous shell formation is essentially shorter when solid particles in slurry droplets are active compared to inert particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.