Abstract

Droplet evaporation offers high heat rejection rates and is widely used in the form of spray cooling or dropwise cooling of various heat dissipating devices. However, due to the limiting heat flux removal capacity of conventional fluids, such as water, these cannot be used in thermal management of high heat flux devices. In this research, the evaporation of silver (Ag)-graphene (GNP) hybrid nanofluid droplet and its residue effects on the evaporation of following Ag-GNP hybrid nanofluid droplet, due to its synergistic thermal properties, is experimentally investigated for various mixing ratios, from MR-1 (0.1(Ag):0.9(GNP)) to MR-5 (0.9(Ag):0.1(GNP)), and different residue sizes. A theoretical model is also proposed for hybrid nanofluid droplet evaporation and semi-empirical relations are developed to estimate the hybrid nanofluid droplet spreading over its residue surface. The results show a substantial increase in the droplet evaporation rate with increasing residue size and decreasing mixing ratio. MR-1 hybrid nanofluid droplet gives the highest evaporation rate (up to 370%) on its highly wetted residue surface, while the evaporation rate significantly drops moving from MR-2 to MR-5 hybrid nanofluid droplets on their partially wetted residue surfaces. Moreover, the evaporation rate substantially increases (up to 240%) with increasing residue size for MR-1 hybrid nanofluid droplet resting on its residue surface, however, the effect of residue size on droplet evaporation rate considerably diminishes moving from MR-2 to MR-5 hybrid nanofluid droplets resting on their respective residues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.