Abstract
Recently, the Heidelberg-Moscow double beta decay experiment has claimed a detection for a neutrino mass with high significance. Here we consider the impact of this measurement on the determination of the dark energy equation of state. By combining the Heidelberg-Moscow result with the WMAP 3-years data and other cosmological datasets we constrain the equation of state to −1.67 < w < −1.05 at 95% c.l. Interestingly enough, coupled neutrino-dark energy models may be consistent with such equation of state. While future data are certainly needed for a confirmation of the controversial Heildelberg-Moscow claim, our result shows that future laboratory searches for neutrino masses may play a crucial role in the determination of the dark energy properties.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have