Abstract

The statistics of vesicle release determine how synapses transfer information, but the classical Poisson model of independent release does not always hold at the first stages of vision and hearing. There, ribbon synapses also encode sensory signals as events comprising two or more vesicles released simultaneously. The implications of such coordinated multivesicular release (MVR) for spike generation are not known. Here we investigate how MVR alters the transmission of sensory information compared with Poisson synapses using a pure rate-code. We used leaky integrate-and-fire models incorporating the statistics of release measured experimentally from glutamatergic synapses of retinal bipolar cells in zebrafish (both sexes) and compared these with models assuming Poisson inputs constrained to operate at the same average rates. We find that MVR can increase the number of spikes generated per vesicle while reducing interspike intervals and latency to first spike. The combined effect was to increase the efficiency of information transfer (bits per vesicle) over a range of conditions mimicking target neurons of different size. MVR was most advantageous in neurons with short time constants and reliable synaptic inputs, when less convergence was required to trigger spikes. In the special case of a single input driving a neuron, as occurs in the auditory system of mammals, MVR increased information transfer whenever spike generation required more than one vesicle. This study demonstrates how presynaptic integration of vesicles by MVR can increase the efficiency with which sensory information is transmitted compared with a rate-code described by Poisson statistics.SIGNIFICANCE STATEMENT Neurons communicate by the stochastic release of vesicles at the synapse and the statistics of this process will determine how information is represented by spikes. The classical model is that vesicles are released independently by a Poisson process, but this does not hold at ribbon-type synapses specialized to transmit the first electrical signals in vision and hearing, where two or more vesicles can fuse in a single event by a process termed coordinated multivesicular release. This study shows that multivesicular release can increase the number of spikes generated per vesicle and the efficiency of information transfer (bits per vesicle) over a range of conditions found in the retina and peripheral auditory system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call