Abstract

The maximization of submodular functions is an NP-Hard problem for certain subclasses of functions, for which a simple greedy algorithm has been shown to guarantee a solution whose quality is within 1/2 of the optimal. When this algorithm is implemented in a distributed way, agents sequentially make decisions based on the decisions of all previous agents. This work explores how limited access to the decisions of previous agents affects the quality of the solution of the greedy algorithm. Specifically, we provide tight upper and lower bounds on how well the algorithm performs, as a function of the information available to each agent. Intuitively, the results show that performance roughly degrades proportionally to the size of the largest group of agents which make decisions independently. Additionally, we consider the case where a system designer is given a set of agents and a global limit on the amount of information that can be accessed. Our results show that the best designs partition the agents into equally-sized sets and allow agents to access the decisions of all previous agents within the same set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.