Abstract

Abstract The potential of high pressure (HP) to control bioactive components using seedlings of Brussels sprouts as a simple non-chopped vegetable system was examined. Enzyme activity in situ compared to purified enzyme and residual enzyme substrate in situ are used as three complementary measures for the HP effect. Purified myrosinase and seedlings of Brussels sprouts were submitted to HP 200–800 MPa at 5 °C for 3 min. The myrosinase activity decreased for both myrosinase systems upon increasing pressure to 800 MPa. Applying first-order kinetic to determine activation volumes revealed a linear relationship from 400 to 600 (ΔV # = − 19.04 mL/mol) and 450–600 MPa (ΔV # = − 37.79 mL/mol) for seedlings and purified myrosinase, respectively, indicating a protective effect of the plant matrix against enzyme inactivation. Purified myrosinase was activated at 200 MPa but at 800 MPa the glucosinolate degradation due to pressure induced disruption of the plant matrix seems to be partly counter-acted by myrosinase inactivation. Industrial relevance High Pressure (HP) processing is an effective non-thermal preservation treatment for liquid and solid food. Moreover, over the last years, the potential of this technology to improve health and safety attributes of foods has been demonstrated. In particular, the ability of HP to preserve bioactive compounds has been established. There are only few studies evaluating the impact of HP on the complex bioactive glucosinolates-myrosinase. Therefore, this study opens the doors through the application of HP to preserve the bioactive glucosinolates in cruciferous vegetables by creating new processing solutions through controlled enzyme inactivation. Thus, HP could be an effective tool to achieve more effective solutions to obtain the new generation of convenient food and meet the need for new bioactive food products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.