Abstract

In dentistry, bone regeneration requires osteoinductive biomaterial with antibacterial properties. Polycaprolactone (PCL) may be combined with different nanofillers including reduced graphene oxide (rGO). Here, the amount of rGO filler was defined to obtain a biocompatible and antibacterial PCL-based surface supporting the adhesion and differentiation of human mesenchymal stem cells (MSCs). Compounds carrying three different percentages of rGO were tested. Among all, the 5% rGO-PCL compound is the most bacteriostatic against Gram-positive bacteria. All scaffolds are biocompatible. MSCs adhere and proliferate on all scaffolds; however, 5% rGO-PCL surface supports the growth of cells and implements the expression of extracellular matrix components necessary to anchor the cells to the surface itself. Moreover, the 5% rGO-PCL surface has superior osteoinductive properties confirmed by the improved alkaline phosphatase activity, mineral matrix deposition, and osteogenic markers expression. These results suggest that 5% rGO-PCL has useful properties for bone tissue engineering purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.