Abstract
Abstract The assumption of gradient wind balance is customarily made so as to derive the theoretical upper-bound intensity of a mature tropical cyclone. Emanuel's theory of hurricane potential intensity (E-PI) makes use of this assumption, whereas more recent studies by Bryan and Rotunno demonstrate that the effect of unbalanced flow can result in maximum winds that are well in excess of E-PI (superintensity). The existence of supergradient winds has been verified in a slab boundary layer model developed by Smith. Here, the authors apply the slab boundary layer model within the framework of classical E-PI theory to investigate the sensitivity of supergradient winds to the radius of maximum gradient wind (RMGW) and four nondimensional model parameters. The authors find that the Rossby number, the drag coefficient, and the modified Rankine decay parameter all have a considerable influence on the strength of the unbalanced flow. In contrast, the ratio of surface exchange coefficients has little noticeable effect on superintensity. The inclusion of horizontal momentum diffusion leads to a weaker superintensity, but the qualitative features of the model remain similar. To further elucidate these findings, the authors use the boundary layer model to examine the modified E-PI theory proposed by Emanuel and Rotunno. They assume a constant Richardson number for the outflow. The boundary layer model driven by the modified E-PI solution depends on just three model parameters rather than the four parameters used in the classical E-PI framework. Despite this apparent advantage, the results obtained in the framework of the modified E-PI are less realistic than those computed with the classical E-PI approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.