Abstract

Abstract The impact of continuously distributed delay has been investigated in this paper to describe the interaction among tumor cells, tumor-specific CD8+T cells, helper T cells and immuno-stimulatory cytokine interleukin-2 (IL-2) through a system of coupled nonlinear ordinary differential equations. We analyze the qualitative properties of the model such as positivity of the solutions and the existence of biologically feasible equilibrium points. Next, we discuss the local asymptotic stability for the delayed and non-delayed system. Our model system experiences Hopf bifurcation with respect to the activation rate λ 1 of tumor-specific CD8+T cells. The effect of continuously distributed delay involved in immune-activation on the system dynamics of the tumor is demonstrated. Our study reveals that the activation rate of CD8+T cells can prevent the oscillation of tumor-presence equilibria as well as tumor-free equilibria of the system. Then we performed some numerical results and interpret their biological implications to validate our analytical findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.