Abstract

Health affects work absenteeism and productivity of workers, making it a relevant marker of an individual's professional development. The aims of this article were to investigate whether changes in the main cause of the sick leaves and the presence of mental health illnesses are associated with return to work with readaptation. A historical cohort study was carried out with non-work-related illnesses suffered by statutory workers of university campuses in a medium-sized city in the state of São Paulo, Brazil. Two exposures were measured: (a) changes, throughout medical examinations, in the International Classification of Diseases (ICD-10) chapter regarding the main condition for the sick leave; and (b) having at least one episode of sick leave due to mental illness, with or without change in the ICD-10 chapter over the follow-up period. The outcome was defined as return to work with adapted conditions. The causal model was established a priori and tested using a multiple logistic regression (MLR) model considering the effects of several confounding factors, and then compared with the same estimators obtained using Targeted Machine Learning. Among workers in adapted conditions, 64% were health professionals, 34% had had changes in the ICD-10 chapter throughout the series of sick leaves, and 62% had diagnoses of mental health issues. In addition, they worked for less time at the university and were absent for longer periods. Having had a change in the illness condition reduced the chance of returning to work in another function by more than 30%, whereas having had at least one absence because of a cause related to mental and behavioral disorders more than doubled the chance of not returning to work in the same activity as before. These results were independent of the analysis technique used, which allows concluding that there were no advantages in the use of targeted maximum likelihood estimation (TMLE), given its difficulties in access, use, and assumptions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.