Abstract

The present experiment was conducted to examine if freshwater (FW) oxygen and carbon dioxide regimes cause physiological responses that lead to cataract formation in Atlantic salmon ( Salmo salar L.) smolt. Duplicate groups of 50 g Atlantic salmon smolts were exposed to three freshwater oxygen saturation regimes (95, 112 or 125% saturation), with or without addition of carbon dioxide (measured 17–18 and 2–3 mg L − 1 , respectively), for six weeks before transfer to seawater (SW). The FW exposure groups were followed up for another six weeks under a common SW regime. Fish were screened for cataract and sampled accordingly, at start, after 6 weeks in FW and after 6 weeks in SW. Increased growth related cataract incidences and severities were recorded in SW, mainly in the groups previously exposed to normoxic and hyperoxic conditions in FW, as compared to the respective groups added carbon dioxide. The concentration of histidine compounds (imidazoles) in muscle and lens tissue, used as quantitative risk markers of cataract, were lower than observed in earlier studies, however, neither were affected by the present water gas regimes in FW nor after follow up in SW. Independently of water oxygenation in FW, muscle free amino acid profiles in salmon groups concomitantly exposed to elevated carbon dioxide indicated use of selected free amino acids for energy purposes. Significantly lower abundance of heat shock protein 70 mRNA and trends towards stepwise reduction of antioxidant enzymes mRNA in the lens from fish exposed to increased water oxygenation were recorded, probably linked to increased growth and/or external stress during smoltification. This represents a first communication on using early molecular markers to express reduced protection of the fish lens against external stress to explain cataract development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.