Abstract

In this study, we aimed to understand the effects of changes in temperature on biochemical and molecular responses associated with the antioxidant defense system in the bay scallop, Argopecten irradians. We measured the contents of H2O2 and malondialdehyde (MDA), as well as the activities of antioxidant enzymes (e.g., glutathione S-transferase [GST], superoxide dismutase [SOD], and catalase [CAT]), and the regulation of stress-related genes (e.g., GST, SOD, CAT, and heat shock protein 70 [HSP70]). In addition, total antioxidant capacity (TAC) was examined in scallops exposed to different temperatures. A. irradians showed high levels of H2O2 and MDA in response to acute thermal stress (48 and 72h of exposure). Temperature changes also led to a significant increase in antioxidant enzyme activity and mRNA expression levels in A. irradians. Interestingly, the TAC increased in response to acute thermal stress (28°C) for up to 12h and decreased thereafter. The oxidative stress induced by high temperatures could not be alleviated by an increase in levels of antioxidant enzymes, such as GST, SOD, and CAT, resulting in high levels of H2O2 and MDA and low levels of TAC. In addition, significant changes (P<0.05) in HSP70 levels were observed in response to changes in temperature, suggesting that HSP70 played an important role in the heat tolerance of A. irradians. In conclusion, A. irradians exhibits a greater degree of oxidative stress responses in high-temperature environments than that in low-temperature environments. Overall, these findings indicate that temperature changes lead to oxidative stress, resulting in cellular damage and activation of the antioxidant defense system in bay scallops. Further experiments are required to elucidate other antioxidants and fully understand the redox system in A. irradians.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.