Abstract

Soil salinity is considered to be a major impediment to the production of rice among other abiotic stresses. In this study, 16S rRNA Illumina amplicon sequencing was performed to characterise the halophilic communities entrapped in rice rhizosphere soil cultivated in different planting systems (conventional, aerobic and System of Rice Intensification (SRI)) under saline conditions. The physicochemical properties and urease, soil dehydrogenase, alkaline phosphatase and arylsulphatase activity of soil samples were evaluated to understand their influence on the bacterial communities of the soil. Electrical conductivity (EC) of soil was lower in SRI soil samples, while the available major soil nutrients (nitrogen, phosphorous and potassium) content and soil enzyme activities such as dehydrogenase, alkaline phosphatase, urease and arylsulphatase were higher. A total of 2,516,700 reads were generated by amplicon sequencing of the hypervariable V3–V4 regions of bacterial 16S rRNA gene and were clustered into 273,447 OTU operational taxonomic units. The total number of Operational Taxonomic Units (OTUs) was higher in the conventional soil samples compared to the SRI and aerobic soil samples. Metagenomic analysis revealed that Proteobacteria was the most dominant phyla in all the planting systems followed by Actinobacteria, Firmicutes and Chloroflexi. The alpha diversity index was higher in conventional soil samples compared to other samples and more species diversity was found in SRI soil samples. KEGG analysis revealed that bacterial communities in different soil samples showed varied functional properties. The bacterial diversity of saline soil in this study can be utilised to identify microbial communities with biotechnological potential that can be employed for plant growth promotion in saline environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call