Abstract
Epidemiological studies of traffic-related air pollution typically estimate exposures at residential locations only; however, if study subjects spend time away from home, exposure measurement error, and therefore bias, may be introduced into epidemiological analyses. For two study areas (Vancouver, British Columbia, and Southern California), we use paired residence- and mobility-based estimates of individual exposure to ambient nitrogen dioxide, and apply error theory to calculate bias for scenarios when mobility is not considered. In Vancouver, the mean bias was 0.84 (range: 0.79-0.89; SD: 0.01), indicating potential bias of an effect estimate toward the null by ~16% when using residence-based exposure estimates. Bias was more strongly negative (mean: 0.70, range: 0.63-0.77, SD: 0.02) when the underlying pollution estimates had higher spatial variation (land-use regression versus monitor interpolation). In Southern California, bias was seen to become more strongly negative with increasing time and distance spent away from home (e.g., 0.99 for 0-2 h spent at least 10 km away, 0.66 for ≥ 10 h spent at least 40 km away). Our results suggest that ignoring daily mobility patterns can contribute to bias toward the null hypothesis in epidemiological studies using individual-level exposure estimates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Exposure Science & Environmental Epidemiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.