Abstract
The COVID-19 lockdown contributes to the improvement of air quality. Most previous studies have attributed this to the reduction of human activity while ignoring the meteorological changes, this may lead to an overestimation or underestimation of the impact of COVID-19 lockdown measures on air pollution levels. To investigate this issue, we propose an XGBoost-based model to predict the concentrations of PM2.5 and PM10 during the COVID-19 lockdown period in 2022, Shanghai, and thus explore the limits of anthropogenic emission on air pollution levels by comprehensively employing the meteorological factors and the concentrations of other air pollutants. Results demonstrate that actual observations of PM2.5 and PM10 during the COVID-19 lockdown period were reduced by 60.81% and 43.12% compared with the predicted values (regarded as the period without the lockdown measures). In addition, by comparing with the time series prediction results without considering meteorological factors, the actual observations of PM2.5 and PM10 during the lockdown period were reduced by 50.20% and 19.06%, respectively, against the predicted values during the non-lockdown period. The analysis results indicate that ignoring meteorological factors will underestimate the positive impact of COVID-19 lockdown measures on air quality.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have