Abstract
Abstract Data assimilation through an ensemble Kalman filter (EnKF) is not exempt from deficiencies, including the generation of long-range unphysical correlations that degrade its performance. The covariance localization technique has been proposed and used in previous research to mitigate this effect. However, an evaluation of its performance is usually hindered by the sparseness and unsustained collection of independent observations. This article assesses the performance of an ocean prediction system composed of a multivariate EnKF coupled with a regional configuration of the Regional Ocean Model System (ROMS) with a covariance localization solution and data assimilation from an ocean glider that operated over a limited region of the Ligurian Sea. Simultaneous with the operation of the forecast system, a high-quality data set was repeatedly collected with a CTD sensor, i.e., every day during the period from 5 to 20 August 2013 (approximately 4 to 5 times the synoptic time scale of the area), located on board the NR/V Alliance for model validation. Comparisons between the validation data set and the forecasts provide evidence that the performance of the prediction system with covariance localization is superior to that observed using only EnKF assimilation without localization or using a free run ensemble. Furthermore, it is shown that covariance localization also increases the robustness of the model to the location of the assimilated data. Our analysis reveals that improvements are detected with regard to not only preventing the occurrence of spurious correlations but also preserving the spatial coherence in the updated covariance matrix. Covariance localization has been shown to be relevant in operational frameworks where short-term forecasts (on the order of days) are required.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have