Abstract

Cholecystectomy alters the bile flow into the intestine and the enterohepatic circulation of the bile acids; this may affect the gut microbiota. We assessed the gut microbiota composition of patients who had undergone cholecystectomy and compared with those who had not. From a cohort of 1463 adult participants who underwent comprehensive health screening examinations, 27 subjects who had undergone cholecystectomy (cholecystectomy group) and 81 age- and sex-matched subjects who had not (control group) were selected. Clinical parameters were collected and compared. Microbial composition was determined by 16S rRNA gene sequencing of DNA extracted from fecal samples. We evaluated differences in the overall microbial composition and in the abundance of taxa. The two groups were comparable with respect to clinical characteristics and laboratory results. The actual number of taxa observed in a sample (observed features) was significantly lower in the cholecystectomy group than in the control group (p = 0.042). The beta diversity of Jaccard distance index was significantly different between the two groups (p = 0.027). Blautia obeum and Veillonella parvula were more abundant in the cholecystectomy group. The difference in the diversity of the gut microbiota between the cholecystectomy and control groups was subtle. However, B. obeum and V. parvula, which have azoreductase activity, were more abundant in the cholecystectomy group. The impact of such changes in the gut microbiota on health remains to be determined.

Highlights

  • The gallbladder (GB) is an organ of the digestive system that stores and concentrates bile between meals

  • 27 subjects who had undergone cholecystectomy and 81 subjects who had not were selected; the subjects were matched for age and sex

  • The two groups were comparable with respect to the clinical characteristics of age, sex, body mass index (BMI), history of smoking, alcohol intake, and dietary intake (Table 1)

Read more

Summary

Introduction

The gallbladder (GB) is an organ of the digestive system that stores and concentrates bile between meals. The GB contracts and releases bile into the small intestine in response to feeding. Bile acids entering the intestines facilitate the absorption of dietary lipids. The GB influences bile flow into the intestine and enterohepatic circulation of bile acids. The GB, with its absorptive and secretory functions, contributes to the composition of the bile flowing into the intestine [1].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call