Abstract

Heusler alloy-based magnetic tunnel junctions have the potential to provide high spin polarization, small damping, and fast switching. In this study, junctions with a ferromagnetic electrode of Co2FeAl were fabricated via room-temperature sputtering on Si/SiO2 substrates. The effect of boron doping on Co2FeAl magnetic tunnel junctions was investigated for different boron concentrations. The surface roughness determined by atomic force microscope, and the analysis of x-ray diffraction measurement on the Co2FeAl thin film reveals critical information about the interface. The Co2FeAl layer was deposited on the bottom and on the top of the insulating MgO layer as two different sample structures to compare the impact of the boron doping on different layers through tunneling magnetoresistance measurements. The doping of boron in Co2FeAl had a large positive impact on the structural and magneto-transport properties of the junctions, with reduced interfacial roughness and substantial improvement in tunneling magnetoresistance. In samples annealed at low temperature, a two-level magnetoresistance was also observed. This is believed to be related to the memristive effect of the tunnel barrier. The findings of this study have practical uses for the design and fabrication of magnetic tunnel junctions with improved magneto-transport properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.