Abstract
With the rapid development of China’s economy, China has become the world’s largest carbon emitter. China not only has an obvious growth rate of industrial carbon emissions but also the intensity of agricultural carbon emissions is hovering at a high level. The development of China’s agricultural economy has largely come at the expense of high emissions. Currently, under the background of global warming and difficulty in controlling greenhouse gas emissions, the development of low-carbon agriculture is an important way to realize the harmonious development of the ecological environment and economic growth and to promote the sustainable development of agriculture. The agricultural production efficiency is the main factor affecting the intensity of agricultural carbon emissions. Based on provincial panel data of China from 2010 to 2019, this paper establishes an indicator system and uses the super-efficiency SBM model to measure agricultural production efficiency. The regional agricultural carbon emissions were estimated using carbon-emission-related agricultural production activities. In order to study the nonlinear relationship between agricultural production efficiency and agricultural carbon emission intensity in the narrow sense, this paper uses a threshold regression model with agricultural carbon emissions as the threshold variable. Based on the analysis of China’s agricultural production efficiency and agricultural carbon emissions from 2010 to 2019, an empirical test is conducted through a threshold regression model. The results show an “inverted U-shaped” relationship between agricultural production efficiency and agricultural carbon emission intensity. In areas with high agricultural production efficiency, the improvement of production efficiency can suppress the intensity of agricultural carbon emissions; in areas with low agricultural production efficiency, the improvement of production efficiency increases the intensity of agricultural carbon emissions. Finally, based on the research conclusions, this paper provides feasible suggestions and countermeasures for China’s agricultural carbon emission reduction and improvement of agricultural production efficiency.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.