Abstract

AbstractOn 4–5 September 2013, a relatively shallow layer of northerly dry airflow was observed just west of the core deep convection associated with the low-level center of the pre-Gabrielle (2013) tropical disturbance. Shortly thereafter, the core deep convection of the disturbance collapsed after having persisted for well over 24 h. The present study provides an in-depth analysis of the interaction between this dry airflow layer and the pre-Gabrielle disturbance core deep convection using a combination of observations, reanalysis fields, and idealized simulations. Based on the analysis, we conclude that the dry airflow layer played an important role in the collapse of the core deep convection in the pre-Gabrielle disturbance. Furthermore, we found that the presence of storm-relative flow was critical to the inhibitive effects of the dry airflow layer on deep convection. The mechanism by which the dry airflow layer inhibited deep convection was found to be enhanced dry air entrainment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call