Abstract

There are multiple treatment strategies that have been reported for breast cancer, while new and effective therapies against it are still necessary. Stimulating the immune system and its components against cancer cells is one of the unique treatment strategies of immunotherapy and long dsRNAs are immunostimulant in this regard. Based on bioinformatics approaches, a fragment of the Rice ragged stunt RNA virus genome was selected and synthesized according to its immunogenicity. Based on the in vitro transcription technique, dsRNA was synthesized and its binding ability to the PEI/PEI-Ac Polyethylenimine (PEI) or Acetylated polyethylenimine (PEI-Ac) was verified by the gel retardation assay. Then, the PEI-Ac was synthesized by adding acetyl groups to the PEI, and the results of the 1H NMR method indicated its successful synthesis. After cancer induction by 4 T1 cells in Balb/C mice, intraperitoneal (IP) and intratumoral (IT) treatment by the PEI/PEI-Ac-dsRNA were performed and the tumor growth inhibition was evaluated. Results demonstrated that PEI/PEI-Ac-dsRNA can lead to a decrease in tumor weight and volume in both the IP and IT routes. Also, by using macro-metastatic nodule counting and hematoxylin and eosin (H&E) staining we showed that PEI/PEI-Ac-dsRNA can prevent micro and macro-metastasis in the lung. Therefore, the PEI/PEI-Ac-dsRNA acts as an effective inhibitor of growth and metastasis of the breast cancer models. We showed that viral dsRNA can exert its antitumor properties by stimulating TNF-α and IFN-γ. In general, our results revealed that dsRNA derived from the plant virus genome stimulates the intrinsic immune system and can be a potential immune stimulant drug for cancer treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call