Abstract

Mesenchymal stem cells (MSCs) have the therapeutic potential to treat a variety of inflammatory and degenerative disease processes, however the effects of the tissue environment on MSCs have been overlooked. Our hypothesis was that the immunomodulatory function of MSCs would be impaired by TLR4 stimulation or exposure to inflammatory macrophages, whereas their immunosuppressive properties would be enhanced by TLR3 stimulation.MSCs were exposed to polyinosinic:polycytidylic acid (poly I:C) to stimulate TLR3 receptors or lipopolysaccharide (LPS) to stimulate TLR4 receptors. MSC1 proinflammatory phenotype in human MSCs was associated with increased IL-6 and IL-8 and MSC2 regenerative phenotype was associated with increased CCL2 and CXCL10. MSC immunomodulatory function was assessed by measuring the ability of primed MSCs to suppress mitogen-stimulated T cell proliferation. Peripheral blood monocytes were isolated using CD14 MACs positive selection, differentiated into macrophages, and polarized using interferon-gamma (IFN-γ). Polarization was confirmed by increased gene expression of TNFα, CCL2, and CXCL10. Inflammatory macrophages were co-cultured with MSCs for 6h, and the resultant MSC phenotype was analyzed as described above.Both TLR3 and TLR4 priming and co-culture of MSCs with inflammatory macrophages resulted in increased expression of IL-6, CCL2, and CXCL10 in MSCs. Both TLR3 and TLR4 priming or exposure of MSCs to inflammatory macrophages significantly (p<0.05) enhanced their immunomodulatory function, demonstrated by a decrease in T cell proliferation in the presence of poly I:C primed MSCs (11%), LPS primed MSCs (7%), or MSCs exposed to inflammatory macrophages (12%), compared to unstimulated MSCs. Additionally, MHC class II positive MSCs tended to have a greater magnitude of response to priming compared to MHC class II negative MSCs. These results suggest that MSCs can be activated by a variety of inflammatory stimuli, but the recipient injured tissue bed in chronic injuries may not contain sufficient inflammatory signals to activate MSC immunomodulatory function. Enhancement of MSCs immunomodulatory function through inflammatory priming prior to clinical application might improve the therapeutic effect of MSC treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call