Abstract
AbstractWe extend the immersed boundary (IB) method to simulate the dynamics of a 2D dry foam by including the topological changes of the bubble network. In the article [Y. Kim, M.-C. Lai, and C. S. Peskin, J. Comput. Phys. 229:5194-5207,2010], we implemented an IB method for the foam problem in the two-dimensional case, and tested it by verifying the von Neumann relation which governs the coarsening of a two-dimensional dry foam. However, the method implemented in that article had an important limitation; we did not allow for the resolution of quadruple or higher order junctions into triple junctions. A total shrinkage of a bubble with more than four edges generates a quadruple or higher order junction. In reality, a higher order junction is unstable and resolves itself into triple junctions. We here extend the methodology previously introduced by allowing topological changes, and we illustrate the significance of such topological changes by comparing the behaviors of foams in which topological changes are allowed to those in which they are not.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.