Abstract
In this paper, we present an immersed boundary (IB) method to simulate a dry foam, i.e., a foam in which most of the volume is attributed to its gas phase. Dry foam dynamics involves the interaction between a gas and a collection of thin liquid-film internal boundaries that partition the gas into discrete cells or bubbles. The liquid-film boundaries are flexible, contract under the influence of surface tension, and are permeable to the gas, which moves across them by diffusion at a rate proportional to the local pressure difference across the boundary. Such problems are conventionally studied by assuming that the pressure is uniform within each bubble. Here, we introduce instead an IB method that takes into account the non-equilibrium fluid mechanics of the gas. To model gas diffusion across the internal liquid-film boundaries, we allow normal slip between the boundary and the gas at a velocity proportional to the (normal) force generated by the boundary surface tension. We implement this method in the two-dimensional case, and test it by verifying the von Neumann relation, which governs the coarsening of a two-dimensional dry foam. The method is further validated by a convergence study, which confirms its first-order accuracy.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.