Abstract
Laser photodetachment is the process when the extra electron of a negative ion is removed by means of laser radiation. This can happen only if the photon energy is larger than the electron affinity of the ion. The process can be used in mass spectrometry to selectively suppress unwanted isobars, provided that the electron affinity of the unwanted isobar is lower than that of the isobar under investigation.At the Ion Laser InterAction Setup (ILIAS) at the University of Vienna laser photodetachment of negative atomic and molecular ions is studied and its applicability for selective isobar suppression in accelerator mass spectrometry (AMS) is evaluated. The setup provides mass separated beams of negative ions with energies up to 30keV. Negative ions are produced in a Middleton type cesium sputter ion source, mass selected and overlapped with a strong continuous wave laser beam. In order to extend the interaction time of ions and laser, the ion beam is decelerated to thermal energies in a gas-filled radio frequency quadrupole cooler. For an appropriate choice of the photon energy, unwanted isobars are neutralized while the isobar of interest is unaffected and remains negatively charged.A description of the ILIAS setup and results from the commissioning phase of the RFQ cooler are presented. Up to 8% ion beam transmission could be achieved after a recent redesign of the extraction system. Furthermore first results of photodetachment experiments of 63Cu− within the RFQ cooler are presented.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have