Abstract

We report the discovery of polarized flux at 2.2 μm from the bright shell of the ≈320 yr old supernova remnant Cas A. The fractional polarizations are comparable at 6 cm and 2.2 μm, and the polarization angles are similar, demonstrating that synchrotron radiation from the same relativistic plasma is being observed at these widely separated wave bands. The relativistic electrons radiating at 2.2 μm have an energy of ≈150 GeV, (γ ≈ 3 × 105), assuming an ≈500 μG magnetic field. The total intensity at 2.2 μm lies close to the power-law extrapolation from radio frequencies, showing that relativistic particle acceleration is likely an ongoing process; the infrared emitting electrons were accelerated no longer than ≈80 yr ago. There is a small but significant concave curvature to the spectrum, as expected if the accelerating shocks have been modified by the back pressure of the cosmic rays; given calibration uncertainties, this conclusion must be considered tentative at present. The 2.2 μm polarization angles and the emission-line filaments observed by the Hubble Space Telescope are both offset from the local radial direction by 10°-20°, providing evidence that the magnetic fields in Cas A are generated by Rayleigh-Taylor instabilities in the decelerating ejecta.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.