Abstract

Observations of the submillimetre emission from Galactic dust, in both total intensityIand polarization, have received tremendous interest thanks to thePlanckfull-sky maps. In this paper we make use of such full-sky maps of dust polarized emission produced from the third public release ofPlanckdata. As the basis for expanding on astrophysical studies of the polarized thermal emission from Galactic dust, we present full-sky maps of the dust polarization fractionp, polarization angleψ, and dispersion function of polarization angles 𝒮. The joint distribution (one-point statistics) ofpandNHconfirms that the mean and maximum polarization fractions decrease with increasingNH. The uncertainty on the maximum observed polarization fraction,pmax= 22.0−1.4+3.5% at 353 GHz and 80′ resolution, is dominated by the uncertainty on the Galactic emission zero level in total intensity, in particular towards diffuse lines of sight at high Galactic latitudes. Furthermore, the inverse behaviour betweenpand 𝒮 found earlier is seen to be present at high latitudes. This follows the 𝒮 ∝ p−1relationship expected from models of the polarized sky (including numerical simulations of magnetohydrodynamical turbulence) that include effects from only the topology of the turbulent magnetic field, but otherwise have uniform alignment and dust properties. Thus, the statistical properties ofp,ψ, and 𝒮 for the most part reflect the structure of the Galactic magnetic field. Nevertheless, we search for potential signatures of varying grain alignment and dust properties. First, we analyse the product map 𝒮 × p, looking for residual trends. While the polarization fractionpdecreases by a factor of 3−4 betweenNH = 1020 cm−2andNH = 2 × 1022 cm−2, out of the Galactic plane, this product 𝒮 × ponly decreases by about 25%. Because 𝒮 is independent of the grain alignment efficiency, this demonstrates that the systematic decrease inpwithNHis determined mostly by the magnetic-field structure and not by a drop in grain alignment. This systematic trend is observed both in the diffuse interstellar medium (ISM) and in molecular clouds of the Gould Belt. Second, we look for a dependence of polarization properties on the dust temperature, as we would expect from the radiative alignment torque (RAT) theory. We find no systematic trend of 𝒮 × pwith the dust temperatureTd, whether in the diffuse ISM or in the molecular clouds of the Gould Belt. In the diffuse ISM, lines of sight with high polarization fractionpand low polarization angle dispersion 𝒮 tend, on the contrary, to have colder dust than lines of sight with lowpand high 𝒮. We also compare thePlanckthermal dust polarization with starlight polarization data in the visible at high Galactic latitudes. The agreement in polarization angles is remarkable, and is consistent with what we expect from the noise and the observed dispersion of polarization angles in the visible on the scale of thePlanckbeam. The two polarization emission-to-extinction ratios,RP/pandRS/V, which primarily characterize dust optical properties, have only a weak dependence on the column density, and converge towards the values previously determined for translucent lines of sight. We also determine an upper limit for the polarization fraction in extinction,pV/E(B − V), of 13% at high Galactic latitude, compatible with the polarization fractionp ≈ 20% observed at 353 GHz. Taken together, these results provide strong constraints for models of Galactic dust in diffuse gas.

Highlights

  • Interstellar dust grains are heated by absorption of the interstellar radiation field (ISRF), the ambient ultraviolet (UV), visible, and near-infrared radiation produced by the ensemble of stars in the Galaxy

  • 9 When considering the Monte Carlo simulations discussed in the previous subsection, we find that the ratio of the ensemble average map S to the map S computed from the smoothed Generalized Needlet Internal Linear Combination (GNILC) data have a mean of 0.90 and a median value of 0.97, with a standard deviation of 0.14

  • Performing the same debiasing for the low and high offset values, and gathering these results for the 99.9th percentile, we obtain a debiased value of 22.0+−31..54 ± 0.1% for the maximum dust polarization fraction observed at 80 resolution and 353 GHz over the full sky, where the first uncertainty relates to the systematic effect of the total intensity offset and the effects of residual systematics, and the second covers the statistical uncertainty estimated from the 1000 Monte Carlo realizations

Read more

Summary

Galactic astrophysics using polarized dust emission

Planck Collaboration: N. Aghanim48, Y. Akrami13,50,52, M. I. R. Alves89,8,48, M. Ashdown59,5, J. Aumont89, C. Baccigalupi73, M. Ballardini19,35, A. J. Banday89,8, R. B. Barreiro54, N. Bartolo25,55, S. Basak80, K. Benabed49,88, J.-P. Bernard89,8, M. Bersanelli28,39, P. Bielewicz71,70,73, J. J. Bock56,10, J. R. Bond7, J. Borrill11,86, F. R. Bouchet49,83, F. Boulanger82,48,49, A. Bracco72,48, M. Bucher2,6, C. Burigana38,26,41, E. Calabrese77, J.-F. Cardoso49, J. Carron20, R.-R. Chary47, H. C. Chiang22,6, L. P. L. Colombo28, C. Combet64, B. P. Crill56,10, F. Cuttaia35, P. de Bernardis27, G. de Zotti36, J. Delabrouille2, J.-M. Delouis63, E. Di Valentino57, C. Dickinson57, J. M. Diego54, O. Doré56,10, M. Douspis48, A. Ducout61, X. Dupac31, G. Efstathiou59,51, F. Elsner67, T. A. Enßlin67, H. K. Eriksen52, E. Falgarone82, Y. Fantaye3,17, R. Fernandez-Cobos54, K. Ferrière89,8, F. Finelli35,41, F. Forastieri26,42, M. Frailis37, A. A. Fraisse22, E. Franceschi35, A. Frolov81, S. Galeotta37, S. Galli58, K. Ganga2, R. T. Génova-Santos53,14, M. Gerbino87, T. Ghosh76,9, J. González-Nuevo15, K. M. Górski56,90, S. Gratton59,51, G. Green60, A. Gruppuso35,41, J. E. Gudmundsson87,22, V. Guillet48,62, , W. Handley59,5, F. K. Hansen52, G. Helou10, D. Herranz54, E. Hivon49,88, Z. Huang78, A. H. Jaffe46, W. C. Jones22, E. Keihänen21, R. Keskitalo11, K. Kiiveri21,34, J. Kim67, N. Krachmalnicoff73, M. Kunz12,48,3, H. Kurki-Suonio21,34, G. Lagache4, J.-M. Lamarre82, A. Lasenby5,59, M. Lattanzi26,42, C. R. Lawrence56, M. Le Jeune2, F. Levrier82, , M. Liguori25,55, P. B. Lilje52, V. Lindholm21,34, M. López-Caniego31, P. M. Lubin23, Y.-Z. Ma57,75,69, J. F. Macías-Pérez65, G. Maggio37, D. Maino28,39,43, N. Mandolesi35,26, A. Mangilli8, A. Marcos-Caballero54, M. Maris37, P. G. Martin7, E. Martínez-González54, S. Matarrese25,55,33, N. Mauri41, J. D. McEwen68, A. Melchiorri27,44, A. Mennella28,39, M. Migliaccio30,45, M.-A. Miville-Deschênes1,48, D. Molinari26,35,42, A. Moneti49, L. Montier89,8, G. Morgante35, A. Moss79, P. Natoli26,85,42, L. Pagano48,82, D. Paoletti35,41, G. Patanchon2, F. Perrotta73, V. Pettorino1, F. Piacentini27, L. Polastri26,42, G. Polenta85, J.-L. Puget48,49, J. P. Rachen16, M. Reinecke67, M. Remazeilles57, A. Renzi55, I. Ristorcelli89,8, G. Rocha57,10, C. Rosset2, G. Roudier2,82,56, J. A. Rubiño-Martín53,14, B. Ruiz-Granados53,14, L. Salvati48, M. Sandri35, M. Savelainen21,34,66, D. Scott18, C. Sirignano25,55, R. Sunyaev67,84, A.-S. Suur-Uski21,34, J. A. Tauber32, D. Tavagnacco37,29, M. Tenti40, L. Toffolatti15,35, M. Tomasi28,39, T. Trombetti38,42, J. Valiviita21,34, F. Vansyngel48, B. Van Tent65, P. Vielva54, F. Villa35, N. Vittorio30, B. D. Wandelt49,88,24, I. K. Wehus52, A. Zacchei37, and A. Zonca74

Introduction
Processing Planck maps for Galactic science
GNILC and ASM post-processing
Zero level for total intensity of Galactic thermal dust emission
GNILC Stokes maps
Polarization fraction and angle maps
Estimation of uncertainties
Polarization angle dispersion function
Relationship of S to alternative estimators
Noise and bias in S
N 2 S2
Statistics of thermal dust polarization maps
Polarization angle
Two-dimensional distribution functions
Polarization fraction versus total gas column density
Polarization angle dispersion versus polarization fraction
Relationship to models
Insight from interrelationships and Galactic context
Origin of the observed variations of the polarization fraction p
Dedicated study for six molecular regions in the Gould Belt
Grain alignment efficiency in the ISM
Comparison with starlight polarization at high Galactic latitudes
Estimates for starlight reddening
Polarization data
Selection of the lines of sight
Determination of the polarization ratios
Conclusions
Variable resolution GNILC maps
GNILC-processed covariance maps
Analytical derivation
The case of Planck data
Magnetic field in a layer at a given line of sight
Fluctuations within each layer over the scale δ
Application to Planck data: the case for strong turbulence
Beam depolarization
Background distortion
Polarization angle difference
Standard deviation
Findings
Mean difference
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call