Abstract

Abstract Using pseudopotential density functional theory within the local-density approximation, we calculate the ideal shear strengths of W for slip on {110}, {112} and {123} planes allowing for complete structural relaxation orthogonal to the applied shear. The strengths in the weak directions on all planes are found to be very nearly equal (about 18GPa, or 11% of the shear modulus G). Moreover, the shear instability occurs at approximately the same applied shear strain (17–18%). This unusual isotropy is explained in terms of the atomic configurations of high-energy saddle points reached during shear. Analysis of these saddle points may also offer a simple explanation for the prevalence of the pencil glide of dislocations on planes containing a (111) direction in bcc metals. Finally, we calculate the ideal cleavage strengths of W on {100} and compare our calculated ideal shear and cleavage strengths with experimental nanoindentation and whisker measurements. All these results can be rather simply understood using a Frenkel–Orowan crystallographic model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call