Abstract

DSP blocks in modern FPGAs can be used for a wide range of arithmetic functions, offering increased performance while saving logic resources for other uses. They have evolved to better support a plethora of signal processing tasks, meaning that in other application domains they may be underutilised. The DSP48E1 primitives in new Xilinx devices support dynamic programmability that can help extend their usefulness; the specific function of a DSP block can be modified on a cycle-by-cycle basis. However, the standard synthesis flow does not leverage this flexibility in the vast majority of cases. The lean DSP Extension Architecture (iDEA) presented in this article builds around the dynamic programmability of a single DSP48E1 primitive, with minimal additional logic to create a general-purpose processor supporting a full instruction-set architecture. The result is a very compact, fast processor that can execute a full gamut of general machine instructions. We show a number of simple applications compiled using an MIPS compiler and translated to the iDEA instruction set, comparing with a Xilinx MicroBlaze to show estimated performance figures. Being based on the DSP48E1, this processor can be deployed across next-generation Xilinx Artix-7, Kintex-7, Virtex-7, and Zynq families.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.