Abstract

In this work we study stationary linear time-series models, and construct and analyse “score-matching” estimators based on the Hyvärinen scoring rule. We consider two scenarios: a single series of increasing length, and an increasing number of independent series of fixed length. In the latter case there are two variants, one based on the full data, and another based on a sufficient statistic.We study the empirical performance of these estimators in three special cases, autoregressive (AR), moving average (MA) and fractionally differenced white noise (ARFIMA) models, and make comparisons with full and pairwise likelihood estimators. The results are somewhat model-dependent, with the new estimators doing well for MA and ARFIMA models, but less so for AR models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.